Overview Acoustic Detection and Identification of Bats

Cori Lausen Birchdale Ecological Ltd. www.batsRus.ca

We can't hear them

Humans hear <20kHz generally and most speech is <5 kHz in frequency.

Most bats echolocate >20kHz (ultrasound).

We need to transform ultrasound into a lower frequency.

This can be done in different ways:

- <u>Heterodyning</u>. Mix the ultrasound with another signal and amplify the difference.
 - Eg. 32 kHz (bat ultrasound) 30 kHz (tuned detector) = 2 kHz (what we hear)

Main Disadvantage: narrow frequency range – must tune to range of interest

• <u>Heterodyning</u>. Mix the ultrasound with another signal and amplify the difference.

Eg. 32 kHz (bat ultrasound) - 30 kHz (tuned detector) = 2 kHz (what we hear)

• Frequency division. Divide the frequency of the signal from the bat, usually by 16, so that it lies in the range humans can hear.

Eg. 32 kHz (bat ultrasound) ÷ 16 kHz = 2 kHz(what we hear)

Main Disadvantage: will not pick up very quiet sounds - the call must exceed a certain threshold.

Main Advantage: broadband, sensing all frequencies - does not need tuning

• <u>Heterodyning</u>. Mix the ultrasound with another signal and amplify the difference.

Eg. 32 kHz (bat ultrasound) - 30 kHz (tuned detector) = 2 kHz (what we hear)

• Frequency division. Divide the frequency of the signal from the bat, usually by 16, so that it lies in the range humans can hear.

Eg. 32 kHz (bat ultrasound) ÷ 16 kHz = 2 kHz(what we hear)

• <u>Heterodyning</u>. Mix the ultrasound with another signal and amplify the difference.

Eg. 32 kHz (bat ultrasound) - 30 kHz (tuned detector) = (what we hear)

Frequency division. Divide the frequency of the signal the bat, usually by 16, so that it lies in the range human hear.

Eg. 32 kHz (bat ultrasound) ÷ 16 kHz = 2 kHz(what we

• <u>Time expansion</u>. The signal is literally stretched out in time, so that the frequency is reduced. Often 10x. Properties of original sound (time, frequency, amplitude).

Eg. 32 kHz (bat ultrasound) slowed down 10x = 3.2 kHz (what

we hear)

We can't hear them.

• <u>Heterodyning</u>. Mix the ultrasound with another signal and amplify the difference.

Eg. 32 kHz (bat ultrasound) - 30 kHz (tuned detector) = 2 kHz (what we hear)

• Frequency division. Divide the frequency of the signal from the bat, usually by 16, so that it lies in the range humans can hear.

Eg. 32 kHz (bat ultrasound) ÷ 16 kHz = 2 kHz(what we hear)

• <u>Time expansion</u>. The signal is literally stretched out in time, so that the frequency is reduced. Often 10x. Preserves properties of sound (time, frequency, amplitude).

Eg. 32 kHz (bat ultrasound) slowed down 10x = 3.2 kHz (what we hear) **Problem: 'Deaf' while it time expands the signal.**

But Seeing is Believing...

• To record bats for *visualizing* calls.

Heterodyne NO

Frequency division **YES**

Time expansion **YES**, but....

Problem: "Deaf" during time expanding (10x 'down-time')

Solution: Advance the technology. Real-time direct digital recording instead....

Some new guys on the block... Real-time Digital Recording

(and you don't need a laptop)

Pettersson D500x

Binary Acoustic Technology, AR125 (+FR125 or *New*: iFR4)

Wildlife Acoustics SM2BAT

What they have in common: Full Spectrum Sound Recording

What full spectrum means....

- time, frequency, amplitude properties of original sound

What full spectrum means....

- time, frequency, amplitude properties of original sound

Time (msec)

- heavy memory needs (digital sound files can be very large!)
- substantial energy requirements for these detectors

What full spectrum means....

- time, frequency, amplitude properties of original sound

Time (msec)

- heavy memory needs (digital sound files can be very large!)
- substantial energy requirements for these detectors

These used to be bigger problems than they are today....

A way of getting around these issues.... Zero-crossings Analysis (ZCA)

- -count each time a sound wave passes the zero point
- -at a preset number of crossings (called Division Ratio, often 8 or 16), a time measurement is made (allowing frequency to be recorded)

Time and frequency properties to describe original sound wave, but not amplitude.

A way of getting around these issues.... Zero-crossings Analysis (ZCA)

-count each time a sound wave passes the *zero point*

-at a preset number of crossings (called Division Ratio, often 8 or 16), a time measurement is made (allowing frequency to be recorded)

Small memory needs and low energy requirements.

The question is:

How much information about the original sound wave do we need to meet our goal(s)? (ie. full spectrum or ZCA?)

Depends on your goal/question.

So now the question becomes:

Is full spectrum better for species ID?

Maybe, in some situations. Not yet clear. No published scientific studies!

-Some call parameters available in full spectrum are:

i. not available in ZCA data

ii. represented differently in ZCA recording

*But does this facilitate full spectrum detectors to provide **better** species ID??.... And if so, how often is this advantageous? Does it make a large difference? In what locations? For what species? Worth the huge memory storage burden? *Published comparison is needed!* Other considerations for differences among detectors:

SAMPLING RATES

- Full spectrum detectors
 - how often does a detector 'sample' the sound to record it digitally
 - affects quality and maximum recordable frequency
 ½ the sampling frequency = max recordable frequency

Sampling Rates

Pettersson D500x

up to 500 kHz

B.A.T. AR125 (+FR125) 250 kHz

Wildlife Acoustics SM2BAT

192 or 384 kHz, Depending on model

All 16 bit recording (file compression options available which reduce bits and can reduce quality).

Other considerations for differences among detectors:

MICROPHONES

- They are not all created equally.
 - levels of noise
 - directionality (e.g. unidirectional mics are inherently noiser but records bats from basically all directions)
 - volumes of detection space
 - different sensitivities to different frequencies (frequency response curves)

Frequency Response Curves

Effect of Different Mics

Reference Call Libraries

What type of **detector/microphone** was used to record the reference calls that you are using for your statistical identifications.

- different types of microphones = different sensitivities
 - so if amplitude plays into how one differentiates between species, then this is an important consideration.

Frequency of maximum amplitude (energy).... But would this be the same on all bat detectors?

Digital Compensation being employed in some software to facilitate use of different detectors.

Software

Manufacturer's Software

	Software Associated with	and other software that recordings
Detector	Downloading/Recording	directly feed into for analysis
B.A.T.	SPECT'R	SCAN'R, Sonobat
Pettersson		BatSoundPro, Sonobat
Anabat	CFCRead	AnalookW
SM2BAT	Wac2Wav	SongScope, Sonobat, AnalookW

Software

Manufacturer's Software

	Software Associated with	and other software that recordings
Detector	Downloading/Recording	directly feed into for analysis
B.A.T.	SPECT'R	SCAN'R, Sonobat
Pettersson		BatSoundPro, Sonobat
Anabat	CFCRead	AnalookW
SM2BAT	Wac2Wav	SongScope, Sonobat, AnalookW

Ability to 'scrub' or remove files that contain noise and no bat pulses.

Testing this is always important – how well does it work in different recording situations? False positives and false negatives will happen. Minimizing these is the goal (consider subsampling). Calculation of error rate may be desired.

SM2BAT – currently the only system that allows analysis of recorded files in either full spectrum or zero-crossing software; recordings are full spectrum files though.

Software

Manufacturer's Software

	Software Associated with	and other software that recordings
Detector	Downloading/Recording	directly feed into for analysis
B.A.T.	SPECT'R	SCAN'R, Sonobat
Pettersson		BatSoundPro, Sonobat
Anabat	CFCRead	AnalookW
SM2BAT	Wac2Wav	SongScope, Sonobat, AnalookW

✓ Auto-ID options for bulk identification of files to species or species-groups.

Testing this is always important – how well does it differentiate species? Best to review all unexpected identifications and subsample all other files - calculation of error rate may be desired.

AnalookW Noise (AllBats) Filter

- Works on datasets to scrub out noise files, but also works within each file
- Can apply *Filter* to make visualizing files "cleaner" good for measuring and displaying

Noise Filter applied (cleaned)

Without Filter applied

Visualizing, Processing, Identifying Analysis Software

Zero crossing analysis

AnalookW (Chris Corben)

FFT spectral analysis

Sonobat (Joe Szewczak)

SCAN'R (Binary Acoustic Technology, Mark Jensen)

SongScope (Wildlife Acoustics, Ian Agranat)

Others: BatSoundPro, Raven, Avisoft, SoundRuler, etc. (many programs allow you to visualize/record but not necessarily *analyze* for automated ID or bulk file labeling, etc.)

Visualizing, Processing, Identifying Analysis Software Zero crossing analysis

AnalookW – Anabat Files; can employ filters for auto-ID and noise removal

Ge Ed. Weyr Filer Tools Read Window Help Image: Seve Birls Image: Seve Birls	_			Y\red bats													 		P
Image Image <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>• • •</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							• • •												
Longe Mye Mye Mye PPRed Labo EpiLaro Laro Moritaria Citile Baizz Undo Citile Baizz Undo Eith Save Buis UD10 AIPA Zpped Myoci Mydyw Myoci Mydywy Paulabo Paulabo EpiLa Morie HighTreq 4000 ConteBalLitt Replace Save Buis EUMA Kited Hardh Myoci EpiLa Myoci Mydywy Paulabo EpiLaci Multipreq 1000 Save As Save Buis C101 AIPA Hardh Myoci EpiLa Myoci Mydywy Paulabo EpiLaci Myoci EpiLavi Looffreq HighTreq 1000 Save As Save Buis C101 AIPA Hardh Myoci EpiLavi Looffreq HighTreq 1000 Save As Save Buis Save As Save Buis C101 AIPA Hardh Hight As Zave As Save As Save Buis Save As Save Buis Save As Save Buis Save As Save Buis C104 Hardh Hight As Zave As Save Buis Hight As Zave As Save Buis Finan Save As Save Buis C104 Hardh Hight As Zave As Save As Save Buis Fi		- 1							5 M 44										
Myn Myno											1	CorioP at List	Beplac	al Sava F	uttal				
COTO ANPA Zoped MycaMyay Myddubb Epulu Epulu Brancis Loeffing 40K Loed Save As Save Budd Citausen Tochibal UBRAKY/ved bats Ullinois V4272125.37#											Undo	CONSDALLISU							
Nike Nike <th< th=""><th>СОТО</th><th></th><th>Zipped</th><th>МусаМууи</th><th>MythMyev</th><th>PisuLabo</th><th>Pisu</th><th>LowFreq</th><th>HighFreq</th><th>40K</th><th></th><th></th><th>Load</th><th>Save E</th><th>luf3-</th><th></th><th></th><th></th><th></th></th<>	СОТО		Zipped	МусаМууи	MythMyev	PisuLabo	Pisu	LowFreq	HighFreq	40K			Load	Save E	luf3-				
160k Param Value U 140k MCode Mode Mode 120k N 20 120k Sc 3438 0 90k Sc 3439 0 90k Sc 3439 0 90k Sc 3439 0 90k Sc 3439 0 90k Sc Sc 3439 90k Sc Sc 3439 90k Sc Sc 3439 90k Sc Sc 304 90k Sc Sc Sc 90k Sc Sc Sc <th>EUMA</th> <th>Kited</th> <th>HandR</th> <th>Myci</th> <th>Epfu</th> <th>MyluLabo</th> <th>Epfu</th> <th>EpfuLaci</th> <th>non50Myo</th> <th>50K</th> <th>Llear</th> <th></th> <th>Save A</th> <th>As Save B</th> <th>luf4-</th> <th></th> <th></th> <th></th> <th></th>	EUMA	Kited	HandR	Myci	Epfu	MyluLabo	Epfu	EpfuLaci	non50Myo	50K	Llear		Save A	As Save B	luf4-				
100k Param Value U 120k N 200 000k FG 343.8 900k FG 70.8 600k FG 70.8 600k FG 70.8 900k FG 70.7 900k FG 70.7 900k FG 70.14 90.20 90.22 90.24 90.25 900k FG FG 7	<u>)</u> C:\Lau	senToshib	a\LIBRAR	Y\red bats	\illinois\k4	272125.3	7#											_	
40k Mode legasy 20k N 20 00k Fc 34.01 Fmax 50.20 Fc 00k Fmax 50.20 10k Fmax 51.1 10k Fmax 51.1 10k Fmax 51.1 10k Fmax 51.1 10k Fmax 51.2 10k Fmax 51.2 <t< td=""><td>602</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><th></th><th></th><td></td><td></td><td>_</td></t<>	602																		_
1 20 000 00 000 00 000 000																	Mode		
90k Sc 3488 90k 00k 00k 90k 010	20k																N		
90k Sc 3488 90k 00k 00k 90k 010	00k																Fo	34.01	kH2
000 0000 000	90k																 Sc	34.38	OP9
60k Fmma 33.49 k 50k Fmma 33.49 k 45k 45k Fmma 37.16 k 45k 40k 10k Fmma 36.83 k 75k 7 7 7 7 7 7 20k 10k 7 7 7 7 7 7 10k 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><th></th><th></th><td></td><td>8.97</td><td></td></t<>																		8.97	
S0k Fmean 37.16 K S0k Fmean 37.16 K A0k Fmean 37.16 K A0k Fmean 75.0 Fmean 75.0 A0k Fmean 75.0 Fmean 75.0 S1k Fmean 75.0 Fmean 75.0 S2k S1 Fmean 75.0 Fmean 75.0 20k S2k S1 400.81 O O 75.7 Fmean 75.7 10k 116 S1 400.81 O O 75.7 Fmean 75.7 75.7 70.0 70.00 70.00 75.7 70.00 70.00 75.7 70.00 70.00 75.7 70.00 70.00 75.7 70.00 70.00 70.00 75.7 70.00 70.00 75.7 70.00 70.00 70.00 75.7 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <th></th> <th></th> <th></th> <td></td> <td></td> <td></td>							:												
45k 40k 40k 40k 40k 40k 40k 40k 40	BUK -				; ;				į.										
402 TBC 0.00		1 1:				1			1								Nibe	19	
30k INnee 3000 30k 0k 11.16 25k 51 400.81 20k 11.16 20 10k 11.16 20 10k 11.16 20 10k 11.16 20 10k 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16 11.16	· ·	1 1	L {	_ \	- K		_ \	()	_ \	1 1	;								
30k 757 m 25k 757 m 20k 757 m 20k 757 m 10k 757 m	35k	- N			~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A	~							 Fknee	36.83	kHz
25k- 20k- 18k- 18k- 16k- 14k- 12k- 10k- 10k- 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.22 Scan Choose File I appe Date Loc Illinois, Warsaw Workshop Datum WCS84 Lat 40.36980 N Lat 40.36980 N Lat 40.36980 N Lon 91.4030 W	30k		<u> </u>	<u> </u>						1 m	<u> </u>	* ** *****	<u>،</u>						
20k 51 400.81 0 18k 10k 0.40 0.25 2 12k 10k 10k 10k 10k 10k 20k 10k 10k 10k 10k 10k 10k 10k 10k 10k 10k 10k <td>25k</td> <td></td> <th></th> <th></th> <th></th> <td></td> <td></td> <td></td>	25k																		
2004 0.25 % 18k- 18k- 18k- 14k- 12k- 10k- 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 Scan Choose File IS ape Date Loc Illinois, Warsaw Workshop Datum WCS84 Lat 40.36980 N Lat 40.36980 N Lon 91.4030 W																	S1 To		
16k- 14k- 12k- 10k- 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 Scan Choose File S ape Date Loc Illinois, Warsaw Workshop Datum WCS84 pecies Labo Spec Lot 91.40300 W																	Qual	0.25	
12k- 10k-																			
10k-	14k																		
0.00 0.02 0.04 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 Scan Choose File S upe Date Loc Illinois, Warsaw Workshop Datum MCS84 Lat 40.36980 N Labo Spec Lon 91.40300 W Statum Statum <td>12k</td> <td></td> <th></th> <th></th> <th></th> <td></td> <td></td> <td></td>	12k																		
ape Date Loc Illinois, Warsaw Workshop Datum WGS84 Lat 40.36980 N Lon 91.40300 W	10k																		
ape Date Loc Illinois, Warsaw Workshop Datum WGS84 pecies Labo Spec Lon 91.40300 W	secsr 0 00		12	0 04	0 06			10	0 12	0 14	- n 1	6 ['] 0 '1	8	n 2n -	0 22	n 24	 Scan	Choose File	Sav
pecies Labo Spec Lat 40.36980 N Lon 91.40300 W	-		_								_								
Lon 91.40300 0	-	-1	Date	J	Poc 11	linois, W						980 N							
	pecies	ab0					5	spec		Lon									

Div: 8 Filetime: 20100427 2125 37 N points displayed: 1660 Drawtime: 0.015 s

Visualizing, Processing, Identifying Analysis Software

Zero crossing analysis (cont'd)

AnalookW – Map, ZCA files (full night at a glance)

Visualizing, Processing, Identifying Analysis Software

Zero crossing analysis AnalookW (Chris Corben)

FFT spectral analysis Sonobat (Joe Szewczak)

Sonobat

Version 2 = to visualize and measure bat pulses

- short sequence files - a few seconds of a bat pass

Version 3 = all functionality of Version 2 + autoID based on DFA - provides probability of identification for each file

Based on Pettersson and some B.A.T. detector recordings.

In the process of accommodating SM2BAT recordings (Wac2Wav currently does a digital compensation)

Best for viewing short sequences of data.

Visualizing, Processing, Identifying Analysis Software

Zero crossing analysis AnalookW (Chris Corben)

FFT spectral analysis Sonobat (Joe Szewczak) SCAN'R (Binary Acoustic Technology, Mark Jensen)

SCAN'R

Visualize and measure

(can also export AnalookW zerocross parameters or Sonobat parameters for further statistical analyses)

Visualizing, Processing, Identifying Analysis Software

Zero crossing analysis AnalookW (Chris Corben)

FFT spectral analysis Sonobat (Joe Szewczak) SCAN'R (Binary Acoustic Technology, Mark Jensen) SongScope (Wildlife Acoustics, Ian Agranat)

SongScope

Potential for autoID – build with reference calls ('recognizers' using algorithms similar to voice recognition). Can view very long sequences of data.

C:\Documents and Set	tings\ian.HUMMINGBIRD\Desktop\Rec	or dings\SIDE_20100420	_195300.wac		- 7 🛛
File Go Help					
20000					
	- b		_		
-20000					•
₩ ₩ ₩ 39.555	30:39.60s 30:39.65s	30:39.70s	30:39.75s 30:39.80s	30:39.855 30:39.905	30:39.95s 30:40.00s
90000Hz					
=					
80000Hz					
70000Hz					
=			P. B.		the state of the s
60000Hz	Markey States (1)	and the second	and the state of the	CARLON REACTION	1
	Contract of the American State	C. C. MARCHAR		AVIA DI ANGLI A	
50000Hz		THE REAL PROPERTY OF			NUMBER P. SAN RELEASE
40000Hz	Constant of the local data		A CONTRACTOR OF		A DECEMBER AND AND A DECEMBER OF
=					
30000Hz					
-					
20000Hz					
10000Hz					
OHZ 0HZ 39.55s					
-50 dB	30:39.60s 30:39.65s -45dB -40dB	30:39.70s -35dB	30:39.75s 30:39.80s	30:39.85≤ 30:39.90≤ -20dB -150	s 30:39.95s 30:40.00s
Click here to begin					
	Hat Enterprise Li 🛛 🎯 Inbox - Mozilla Th	und 💽 C:\Documents ar	nd Se		😰 🖞 🌏 📶 6:12 PM

Output of Analysis Software

Sonobat 3

- Discriminant Function Analysis [DFA] with hierarchical analysis can take some sequence parameters into consideration.
- ID for each file (species or species-group) with a percentage value assigned to each file (distance from centroid of each species or species-group).
- measurements of calls provided (for further stats if desired)
- 'known' species are fixed (software specific to regions) must order regional-specific
- automated classification no parameters are entered

AnalookW

- ID assigned to files that meet criteria of the filter(s) through which they are scanned (species or species-group). Files with no identifiable elements are not labeled.
- measurements of calls provided (for further stats if desired)
- user decides what species and call parameters are considered must construct filters based on knowledge of bats.

'Auto-ID'

Currently popular:

- Statistical (probability) approach DFA
 - Sonobat (for full spectrum data)
 - others on horizon (e.g. BCID for zero-cross data)
- Matching criteria filters

AnalookW

'Auto-ID'

Discriminant Function Analysis (DFA)

Use a reference library of bat pulses from bats for which species identification is known, to assign a 'probability of identification' to unknown bat calls.
'Auto-ID'

Discriminant Function Analysis (DFA)

'Probability of identification' (distance from centroid) based on features of echolocation calls

(e.g. call shape, characteristic frequency, slope, duration, etc.)

KNOWNS

UNKNOWNS

In reality, many species have overlapping call features – because echolocation is *functional*.

- Auto-ID is only as good as the input
 How well can it differentiate the 'Knowns'
 - 'Knowns' can produce similar echolocation calls under conditions where they are receiving a lot of echoes
 - (ie. effect of 'clutter' such as vegetation, other bats, water surface, etc.)

Clutter ... clutters the identification

Little Brown in **low** clutter

Little Brown in **high** clutter Northern Myotis (a bat that tends to stay in high clutter)

Calls of little browns can resemble northern Myotis when they are in high clutter situations such as near trees, or flying close to the ground. In fact, calls of many Myotis species look increasingly similar in high clutter situations.

Search-phase Continuum

Big Brown Bat

•Two species of different families

•These are all search-phase calls!

•Produced at different levels of clutter

•Variation within an individual is much greater than between families!

Mexican Freetail Bat

- Auto-ID is only as good as the input
 - How well can it differentiate the 'Knowns'
 - 'Knowns' can produce similar echolocation calls (e.g effect of clutter).
 - Algorithms for measuring calls and describing sequences of calls are not perfect (but progress continues)

Auto-detection of Bat Pulses

is not perfect (e.g. a pulse can be incorrectly measured)

<u> </u>		
160k	Param	Value Units
140k	Mode	legacy
120k	N	2
100k	Fc Sc	51.68 kHz 106.21 OPS
90k 80k	Dur	2.32 ms
70k	Fmax Fmin	65.60 kHz 49.81 kHz
60k	Fmean	45.61 KH2 55.04 kHz
50k	Ntbc TBC	1 0.00 ms
40k	Fknee	57.69 kHz
30k	Tknee Qk	0.49 ms 4.07 %
25k	§1	332.68 OPS
20k	Tc Qual	2.08 ms 0.24 %
16k		
14k		
12k		
10k		
secs 0.57	Scan	Choose File Save

- Auto-ID is only as good as the input
 - How well can it differentiate the 'Knowns'
 - 'Knowns' can produce similar echolocation calls (e.g effect of clutter).
 - Algorithms for measuring calls are not perfect (but progress continues)
 - Take-home messages:
 - 1. Auto-ID has *limits*. We must acknowledge these. Even high quality recordings are not always identifiable to species.
 - 2. Know what you are doing. Don't just accept auto-ID output blindly.

Future in AutoID Challenges

- More sophisticated algorithms for differentiating species
- Functioning similarly with all of the different detectors/microphones.

Acoustics Break-Out Groups Friday

- Sonobat and Pettersson (Joe Szewczak)
- Binary Acoustic Technology (Mark Jensen)
- Wildlife Acoustics SM2BAT (Ian Agranat)
- Anabat (Chris Corben)

Pettersson Elektronik, D500x

Wildlife Acoustics SM2BAT

Zero-crossing Recording

Binary Acoustic Technology, AR125 + FR125

iFR4 – *new* –show-casing at this conference; internal battery rechargeable with direct attach solar panel; SDcard; lowered power consumption Titley Scientific SD2 Anabat

Full Spectrum

Direct Digital

Recording